Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Res ; 83(1): 16-54, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34762760

RESUMO

The coronavirus disease-19 (COVID-19) pandemic has become a global threat since its first outbreak at the end of 2019. Several review articles have been published recently, focusing on the aspects of target biology, drug repurposing, and mechanisms of action (MOAs) for potential treatment. This review gathers all small molecules currently in active clinical trials, categorizes them into six sub-classes, and summarizes their clinical progress. The aim is to provide the researchers from both pharmaceutical industries and academic institutes with the handful information and dataset to accelerate their research programs in searching effective small molecule therapy for treatment of COVID-19.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ensaios Clínicos como Assunto , SARS-CoV-2 , Antivirais/farmacologia , Síndrome da Liberação de Citocina/prevenção & controle , Indústria Farmacêutica , Humanos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
2.
Science ; 374(6575): 1626-1632, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34735219

RESUMO

Efforts to determine why new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants demonstrate improved fitness have been limited to analyzing mutations in the spike (S) protein with the use of S-pseudotyped particles. In this study, we show that SARS-CoV-2 virus-like particles (SC2-VLPs) can package and deliver exogenous transcripts, enabling analysis of mutations within all structural proteins and at multiple steps in the viral life cycle. In SC2-VLPs, four nucleocapsid (N) mutations found universally in more-transmissible variants independently increased messenger RNA delivery and expression ~10-fold, and in a reverse genetics model, the serine-202→arginine (S202R) and arginine-203→methionine (R203M) mutations each produced >50 times as much virus. SC2-VLPs provide a platform for rapid testing of viral variants outside of a biosafety level 3 setting and demonstrate N mutations and particle assembly to be mechanisms that could explain the increased spread of variants, including B.1.617.2 (Delta, which contains the R203M mutation).


Assuntos
Partículas Artificiais Semelhantes a Vírus , Proteínas do Nucleocapsídeo de Coronavírus/genética , Mutação , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Animais , Linhagem Celular , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Evolução Molecular , Genoma Viral , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plasmídeos , RNA Mensageiro/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Empacotamento do Genoma Viral , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Internalização do Vírus
3.
Curr Microbiol ; 78(4): 1099-1114, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33638671

RESUMO

A novel coronavirus member was reported in Wuhan City, Hubei Province, China, at the end of the year 2019. Initially, the infection spread locally, affecting the Wuhan people, and then expanded rapidly throughout the world. On 11 March 2020, the World Health Organization (WHO) proclaimed it a global pandemic. The virus is a new strain most closely related to a bat coronavirus (RaTG13) which was not previously discovered in humans and is now formally known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus disease 2019 (COVID-19) is the disease syndrome that the SARS-CoV-2 virus triggers. It is suggested that SARS-CoV-2 can be transmitted through aerosols, direct/indirect contact, and also during medical procedures and specimen handling. The infection is characterized by isolated flu-like symptoms, but there may be specific signs of fever, fatigue, cough, and shortness of breath, as well as the loss of smell and breathing difficulty. Within this report, we tried to review the most current scientific literature published by January 2021 on various aspects of the outbreak, including virus structure, pathogenesis, clinical presentation, epidemiology, diagnostic approaches, potential therapeutics and vaccines, and prospects. We hope this article makes a beneficial impact on public education to better deal with the SARS-CoV-2 crisis and push a step forward in the near term towards its prevention and control.


Assuntos
COVID-19 , Replicação Viral/fisiologia , COVID-19/genética , COVID-19/patologia , COVID-19/terapia , COVID-19/transmissão , Genoma Viral/genética , Humanos , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Ligação Viral , Internalização do Vírus
5.
Andrology ; 9(1): 53-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32524732

RESUMO

BACKGROUND: The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease 2019 (COVID-19) seems to have a worse clinical course among infected men compared with women, thus highlighting concerns about gender predisposition to serious prognosis. Therefore, androgens, particularly testosterone (T), could be suspected as playing a critical role in driving this excess of risk. However, gonadal function in critically ill men is actually unknown, mainly because serum T concentration is not routinely measured in clinical practice, even more in this clinical context. OBJECTIVE: To overview on possible mechanisms by which serum T levels could affect the progression of COVID-19 in men. METHODS: Authors searched PubMed/MEDLINE, Web of Science, EMBASE, Cochrane Library, Google, and institutional websites for medical subject headings terms and free text words referred to "SARS-CoV-2," "COVID-19," "testosterone," "male hypogonadism," "gender" "immune system," "obesity," "thrombosis" until May 19th 2020. RESULTS: T, co-regulating the expression of angiotensin-converting enzyme 2 and transmembrane protease serine 2 in host cells, may facilitate SARS-CoV-2 internalization. Instead, low serum T levels may predispose to endothelial dysfunction, thrombosis and defective immune response, leading to both impaired viral clearance and systemic inflammation. Obesity, one of the leading causes of severe prognosis in infected patients, is strictly associated with functional hypogonadism, and may consistently strengthen the aforementioned alterations, ultimately predisposing to serious respiratory and systemic consequences. DISCUSSION AND CONCLUSION: T in comparison to estrogen may predispose men to a widespread COVID-19 infection. Low serum levels of T, which should be supposed to characterize the hormonal milieu in seriously ill individuals, may predispose men, especially elderly men, to poor prognosis or death. Further studies are needed to confirm these pathophysiological assumptions and to promptly identify adequate therapeutic strategies.


Assuntos
COVID-19/virologia , Disparidades nos Níveis de Saúde , SARS-CoV-2/patogenicidade , Testosterona/sangue , COVID-19/sangue , COVID-19/diagnóstico , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Prognóstico , Receptores Virais/metabolismo , Medição de Risco , Fatores de Risco , Fatores Sexuais , Internalização do Vírus
6.
J Transl Med ; 18(1): 390, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059719

RESUMO

While the COVID-19 pandemic has spurred intense research and collaborative discovery worldwide, the development of a safe, effective, and targeted antiviral from the ground up is time intensive. Therefore, most antiviral discovery efforts are focused on the re-purposing of clinical stage or approved drugs. While emerging data on drugs undergoing COVID-19 repurpose are intriguing, there is an undeniable need to develop broad-spectrum antivirals to prevent future viral pandemics of unknown origin. The ideal drug to curtail rapid viral spread would be a broad-acting agent with activity against a wide range of viruses. Such a drug would work by modulating host-proteins that are often shared by multiple virus families thereby enabling preemptive drug development and therefore rapid deployment at the onset of an outbreak. Targeting host-pathways and cellular proteins that are hijacked by viruses can potentially offer broad-spectrum targets for the development of future antiviral drugs. Such host-directed antivirals are also likely to offer a higher barrier to the development and selection of drug resistant mutations. Given that most approved antivirals do not target host-proteins, we reinforce the need for the development of such antivirals that can be used in pre- and post-exposure populations.


Assuntos
Antivirais , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Descoberta de Drogas , Necessidades e Demandas de Serviços de Saúde , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/classificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/genética , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/normas , Descoberta de Drogas/organização & administração , Descoberta de Drogas/normas , Descoberta de Drogas/tendências , Saúde Global , Necessidades e Demandas de Serviços de Saúde/organização & administração , Necessidades e Demandas de Serviços de Saúde/normas , Necessidades e Demandas de Serviços de Saúde/tendências , Humanos , Mutagênese/efeitos dos fármacos , Avaliação das Necessidades/organização & administração , Avaliação das Necessidades/normas , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2 , Internalização do Vírus/efeitos dos fármacos
7.
Infect Genet Evol ; 85: 104507, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858233

RESUMO

The COVID-19 pandemic highlighted healthcare disparities in multiple countries. As such morbidity and mortality vary significantly around the globe between populations and ethnic groups. Underlying medical conditions and environmental factors contribute higher incidence in some populations and a genetic predisposition may play a role for severe cases with respiratory failure. Here we investigated whether genetic variation in the key genes for viral entry to host cells-ACE2 and TMPRSS2-and sensing of viral genomic RNAs (i.e., TLR3/7/8) could explain the variation in incidence across diverse ethnic groups. Overall, these genes are under strong selection pressure and have very few nonsynonymous variants in all populations. Genetic determinant for the binding affinity between SARS-CoV-2 and ACE2 does not show significant difference between populations. Non-genetic factors are likely to contribute differential population characteristics affected by COVID-19. Nonetheless, a systematic mutagenesis study on the receptor binding domain of ACE2 is required to understand the difference in host-viral interaction across populations.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Receptores Toll-Like/genética , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , Humanos , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Seleção Genética , Serina Endopeptidases/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Internalização do Vírus
8.
J Genet ; 992020.
Artigo em Inglês | MEDLINE | ID: mdl-32661206

RESUMO

At present, more than 200 countries and territories are directly affected by the coronavirus disease-19 (COVID-19) pandemic. Incidence and case fatality rate are significantly higher among elderly individuals (age>60 years), type 2 diabetes and hypertension patients. Cellular receptor ACE2, serine protease TMPRSS2 and exopeptidase CD26 (also known as DPP4) are the three membrane bound proteins potentially implicated in SARS-CoV-2 infection. We hypothesised that common variants from TMPRSS2 and CD26 may play critical role in infection susceptibility of predisposed population or group of individuals. Coding (missense) and regulatory variants from TMPRSS2 and CD26 were studied across 26 global populations. Two missense and five regulatory SNPs were identified to have differential allelic frequency. Significant linkage disequilibrium (LD) signature was observed in different populations. Modelled protein-protein interaction (PPI) predicted strong molecular interaction between these two receptors and SARS-CoV-2 spike protein (S1 domain). However, two missense SNPs, rs12329760 (TMPRSS2) and rs1129599 (CD26), were not found to be involved physically in the said interaction. Four regulatory variants (rs112657409, rs11910678, rs77675406 and rs713400) from TMPRSS2 were found to influence the expression of TMPRSS2 and pathologically relevant MX1. rs13015258 a 50 UTR variant from CD26 have significant role in regulation of expression of key regulatory genes that could be involved in SARS-CoV-2 internalization. Overexpression of CD26 through epigenetic modification at rs13015258-C allele was found critical and could explain the higher SARS-CoV-2 infected fatality rate among type 2 diabetes.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/genética , Dipeptidil Peptidase 4/genética , Pneumonia Viral/genética , Serina Endopeptidases/genética , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/metabolismo , Epigenômica , Predisposição Genética para Doença , Variação Genética , Humanos , Desequilíbrio de Ligação , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
9.
Fertil Steril ; 114(2): 223-232, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641214

RESUMO

OBJECTIVE: To determine the susceptibility of the endometrium to infection by-and thereby potential damage from-SARS-CoV-2. DESIGN: Analysis of SARS-Cov-2 infection-related gene expression from endometrial transcriptomic data sets. SETTING: Infertility research department affiliated with a public hospital. PATIENT(S): Gene expression data from five studies in 112 patients with normal endometrium collected throughout the menstrual cycle. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Gene expression and correlation between viral infectivity genes and age throughout the menstrual cycle. RESULT(S): Gene expression was high for TMPRSS4, CTSL, CTSB, FURIN, MX1, and BSG; medium for TMPRSS2; and low for ACE2. ACE2, TMPRSS4, CTSB, CTSL, and MX1 expression increased toward the window of implantation. TMPRSS4 expression was positively correlated with ACE2, CTSB, CTSL, MX1, and FURIN during several cycle phases; TMPRSS2 was not statistically significantly altered across the cycle. ACE2, TMPRSS4, CTSB, CTSL, BSG, and MX1 expression increased with age, especially in early phases of the cycle. CONCLUSION(S): Endometrial tissue is likely safe from SARS-CoV-2 cell entry based on ACE2 and TMPRSS2 expression, but susceptibility increases with age. Further, TMPRSS4, along with BSG-mediated viral entry into cells, could imply a susceptible environment for SARS-CoV-2 entry via different mechanisms. Additional studies are warranted to determine the true risk of endometrial infection by SARS-CoV-2 and implications for fertility treatments.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Endométrio/metabolismo , Endométrio/virologia , Regulação Viral da Expressão Gênica , Pneumonia Viral/metabolismo , Adulto , Fatores Etários , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/genética , COVID-19 , Infecções por Coronavirus/genética , Feminino , Humanos , Ciclo Menstrual , Pessoa de Meia-Idade , Pandemias , Peptidil Dipeptidase A/biossíntese , Peptidil Dipeptidase A/genética , Pneumonia Viral/genética , Medição de Risco/métodos , SARS-CoV-2 , Internalização do Vírus , Adulto Jovem
10.
Clin Gastroenterol Hepatol ; 18(8): 1663-1672, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32278065

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19) pandemic is a worldwide emergency. An increasing number of diarrhea cases is reported. Here we investigate the epidemiology, clinical presentation, molecular mechanisms, management, and prevention of SARS-CoV-2 associated diarrhea. We searched on PubMed, EMBASE, and Web of Science up to March 2020 to identify studies documenting diarrhea and mechanism of intestinal inflammation in patients with confirmed diagnosis of SARS-CoV-2 infection. Clinical studies show an incidence rate of diarrhea ranging from 2% to 50% of cases. It may precede or trail respiratory symptoms. A pooled analysis revealed an overall percentage of diarrhea onset of 10.4%. SARS-CoV uses the angiotensin-converting enzyme 2 (ACE2) and the serine protease TMPRSS2 for S protein priming. ACE2 and TMPRSS2 are not only expressed in lung, but also in the small intestinal epithelia. ACE2 is expressed furthermore in the upper esophagus, liver, and colon. SARS-CoV-2 binding affinity to ACE2 is significantly higher (10-20 times) compared with SARS-CoV. Several reports indicate viral RNA shedding in stool detectable longer time period than in nasopharyngeal swabs. Current treatment is supportive, but several options appear promising and are the subject of investigation. Diarrhea is a frequent presenting symptom in patients infected with SARS-CoV-2. Increasing evidence indicates possible fecal oral transmission, indicating the need for a rapid and effective modification of the screening and diagnostic algorithms. The optimal methods to prevent, manage, and treat diarrhea in COVID-19 infected patients are subjects of intensive research.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/complicações , Diarreia/epidemiologia , Diarreia/fisiopatologia , Gerenciamento Clínico , Fezes/virologia , Pneumonia Viral/complicações , Enzima de Conversão de Angiotensina 2 , COVID-19 , Criança , Diarreia/patologia , Diarreia/terapia , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Incidência , Controle de Infecções/métodos , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral , Internalização do Vírus
11.
Nat Microbiol ; 5(4): 562-569, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32094589

RESUMO

Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here, we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells, and confirm that human ACE2 is the receptor for the recently emerging SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Peptidil Dipeptidase A/metabolismo , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/química , Betacoronavirus/classificação , Antígenos CD13/metabolismo , COVID-19 , Linhagem Celular , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/metabolismo , Humanos , Mutação , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Domínios Proteicos , Receptores de Coronavírus , Receptores Virais/química , Receptores Virais/genética , Proteínas Recombinantes de Fusão/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Tripsina/metabolismo
12.
World J Gastroenterol ; 25(32): 4580-4597, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31528088

RESUMO

Chronic delta hepatitis is the most severe form of viral hepatitis affecting nearly 65 million people worldwide. Individuals with this devastating illness are at higher risk for developing cirrhosis and hepatocellular carcinoma. Delta virus is a defective RNA virus that requires hepatitis B surface antigen for propagation in humans. Infection can occur in the form of a co-infection with hepatitis B, which can be self-limiting, vs superinfection in a patient with established hepatitis B infection, which often leads to chronicity in majority of cases. Current noninvasive tools to assess for advanced liver disease have limited utility in delta hepatitis. Guidelines recommend treatment with pegylated interferon, but this is limited to patients with compensated disease and is efficacious in about 30% of those treated. Due to limited treatment options, novel agents are being investigated and include entry, assembly and export inhibitors of viral particles in addition to stimulators of the host immune response. Future clinical trials should take into consideration the interaction of hepatitis B and hepatitis D as suppression of one virus can lead to the activation of the other. Also, surrogate markers of treatment efficacy have been proposed.


Assuntos
Antivirais/uso terapêutico , Coinfecção/tratamento farmacológico , Hepatite B Crônica/tratamento farmacológico , Hepatite D Crônica/tratamento farmacológico , Superinfecção/tratamento farmacológico , Terapias em Estudo/métodos , Antivirais/farmacologia , Coinfecção/epidemiologia , Coinfecção/virologia , Quimioterapia Combinada/métodos , Carga Global da Doença , Antígenos de Superfície da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/epidemiologia , Hepatite B Crônica/virologia , Hepatite D Crônica/epidemiologia , Hepatite D Crônica/virologia , Vírus Delta da Hepatite/imunologia , Vírus Delta da Hepatite/patogenicidade , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Lipopeptídeos/farmacologia , Lipopeptídeos/uso terapêutico , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Literatura de Revisão como Assunto , Superinfecção/epidemiologia , Superinfecção/virologia , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Resultado do Tratamento , Montagem de Vírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
13.
Virology ; 523: 129-139, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144786

RESUMO

Experimental results in vitro and in animal models are used to guide researchers in testing vaccines or treatment in humans. However, viral kinetics are different in vitro, in animals, and in humans, so it is sometimes difficult to translate results from one system to another. In this study, we use a mathematical model to fit experimental data from multiple cycle respiratory syncytial virus (RSV) infections in vitro, in african green monkey (AGM), and in humans in order to quantitatively compare viral kinetics in the different systems. We find that there are differences in viral clearance rate, productively infectious cell lifespan, and eclipse phase duration between in vitro and in vivo systems and among different in vivo systems. We show that these differences in viral kinetics lead to different estimates of drug effectiveness of fusion inhibitors in vitro and in AGM than in humans.


Assuntos
Modelos Estatísticos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Inibidores de Proteínas Virais de Fusão/uso terapêutico , Proteínas Virais de Fusão/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Adulto , Idoso , Animais , Criança , Chlorocebus aethiops , Expressão Gênica , Especificidade de Hospedeiro , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Fusão de Membrana/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925662

RESUMO

VIRIP has been identified as natural HIV-1 inhibitor targeting the gp41 fusion peptide. An optimized analogue (VIR-576) was effective in a phase I/II clinical trial and initial studies showed that HIV-1 resistance to VIRIP-based inhibitors has a high genetic barrier. Partially resistant CXCR4 (X4)-tropic HIV-1 NL4-3 variants could be obtained, however, after more than 15 months of passaging in MT-4 cells in the presence of another derivative (VIR-353). Sequence analyses identified the accumulation of seven mutations across the HIV-1 envelope glycoprotein but outside the gp41 fusion peptide. The authors suggested that the three initial alterations conferred resistance, while subsequent changes restored viral fitness. Here, we introduced these mutations individually and in combination into X4- and CCR5 (R5)-tropic HIV-1 constructs and determined their impact on VIR-353 and VIR-576 susceptibility, viral infectivity, replication fitness, and fusogenicity. We found that essentially all seven mutations contribute to reduced susceptibility to VIRIP-based inhibitors. HIV-1 constructs containing ≥4 changes were substantially more resistant to both VIRIP-based inhibitors and the VRC34.01 antibody targeting the fusion peptide. However, they were also much less infectious and fusogenic than those harboring only the three initial alterations. Furthermore, the additional changes attenuated rather than rescued HIV-1 replication in primary human cells. Thus, the genetic barrier to HIV-1 resistance against VIRIP-based inhibitors is higher than previously suggested, and mutations reducing viral susceptibility come at a severe fitness cost that was not rescued during long-term cell culture passage.IMPORTANCE Many viral pathogens are critically dependent on fusion peptides (FPs) that are inserted into the cellular membrane for infection. Initially, it was thought that FPs cannot be targeted for therapy because they are hardly accessible. However, an optimized derivative (VIR-576) of an endogenous fragment of α1-antitrypsin, named VIRIP, targeting the gp41 FP reduced viral loads in HIV-1-infected individuals. Characterization of HIV-1 variants selected during long-term cell-culture passage in the presence of a VIRIP derivative suggested that just three mutations in the HIV-1 Env protein might be sufficient for VIRIP resistance and that four subsequent changes restored viral fitness. Here, we show that all seven mutations contribute to reduced viral susceptibility to VIRIP-based inhibitors and demonstrate that the additional changes strongly impair rather than rescue HIV-1 infectivity, fusogenicity, and replication fitness. High genetic barrier to resistance and severe fitness cost support further clinical development of this class of antiviral agents.


Assuntos
Aptidão Genética/efeitos dos fármacos , Proteína gp41 do Envelope de HIV/genética , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Mutação , Fragmentos de Peptídeos/genética , alfa 1-Antitripsina/genética , Células HEK293 , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Fragmentos de Peptídeos/metabolismo , Receptores CCR5/metabolismo , Internalização do Vírus/efeitos dos fármacos , alfa 1-Antitripsina/metabolismo
15.
J Biol Chem ; 292(49): 20196-20207, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29046351

RESUMO

Enveloped viruses transfer their genomes into host cells by fusing their membrane to that of the cell. To visualize single-virus fusion in living cells, researchers take advantage of the proteolytic maturation of HIV, type 1 (HIV-1), which can generate free fluorescent proteins within the viral particle. Co-labeling viruses with a content marker and a fluorescently tagged Vpr (a viral core protein) enables detection of single-virus fusions, but a major limitation of this approach is that not all viral particles incorporate both markers. Here we designed a labeling strategy based on the bifunctional mCherry-2xCL-YFP-Vpr construct, in which 2xCL denotes a tandem cleavage site for the viral protease. This bifunctional marker was efficiently cleaved during virus maturation, producing free mCherry and the core-associated YFP-Vpr. A nearly perfect colocalization of these two markers in virions and their fixed 1:1 ratio enabled automated detection of single-particle fusion in both fixed and live cells based on loss of the mCherry signal. Furthermore, a drop in FRET efficiency between YFP and mCherry because of cleavage of the bifunctional marker, which manifested as a marked shift in the normalized YFP/mCherry fluorescence ratio, reliably predicted viral protease activity in single virions. This feature could discriminate between the particles containing free mCherry, and therefore likely representing mature viruses, and immature particles whose fusion cannot be detected. In summary, our new labeling strategy offers several advantages compared with previous approaches, including increased reliability and throughput of detection of viral fusion. We anticipate that our method will have significant utility for studying viral fusion and maturation.


Assuntos
Fluorescência , Protease de HIV/metabolismo , Engenharia de Proteínas/métodos , Coloração e Rotulagem/métodos , Vírion/metabolismo , Internalização do Vírus , Automação , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Métodos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Proteína Vermelha Fluorescente
16.
Sci Rep ; 6: 22790, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26952867

RESUMO

Influenza A virus (IAV) is a severe worldwide threat to public health and economic development that results in the emergence of drug-resistant or highly virulent strains. Therefore, it is imperative to develop potent anti-IAV drugs with different modes of action to currently available drugs. Herein, we show a new class of antiviral peptides generated by conjugating two known short antiviral peptides: part-1 (named Jp with the sequence of ARLPR) and part-2 (named Hp with the sequence of KKWK). The new peptides were thus created by hybridization of these two domains at C- and N- termini, respectively. The anti-IAV screening results identified that C20-Jp-Hp was the most potent peptide with IC50 value of 0.53 µM against A/Puerto Rico/8/34 (H1N1) strain. Interestingly, these new peptides display lower toxicities toward mammalian cells and higher therapeutic indices than their prototypes. In addition, the mechanism of action of C20-Jp-Hp was extensively investigated.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/efeitos adversos , Linhagem Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Cães , Farmacorresistência Viral , Células HEK293 , Hemaglutinação por Vírus/efeitos dos fármacos , Humanos , Células Madin Darby de Rim Canino , Neuraminidase/antagonistas & inibidores , Relação Estrutura-Atividade
17.
Protein Expr Purif ; 119: 1-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26506568

RESUMO

In the continued absence of an effective anti-HIV vaccine, approximately 2 million new HIV infections occur every year, with over 95% of these in developing countries. Calls have been made for the development of anti-HIV drugs that can be formulated for topical use to prevent HIV transmission during sexual intercourse. Because these drugs are principally destined for use in low-resource regions, achieving production costs that are as low as possible is an absolute requirement. 5P12-RANTES, an analog of the human chemokine protein RANTES/CCL5, is a highly potent HIV entry inhibitor which acts by achieving potent blockade of the principal HIV coreceptor, CCR5. Here we describe the development and optimization of a scalable low-cost production process for 5P12-RANTES based on expression in Pichia pastoris. At pilot (150 L) scale, this cGMP compliant process yielded 30 g of clinical grade 5P12-RANTES. As well as providing sufficient material for the first stage of clinical development, this process represents an important step towards achieving production of 5P12-RANTES at a cost and scale appropriate to meet needs for topical HIV prevention worldwide.


Assuntos
Fármacos Anti-HIV/metabolismo , Quimiocinas CC/biossíntese , Infecções por HIV/tratamento farmacológico , HIV/efeitos dos fármacos , Pichia , Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/farmacologia , Reatores Biológicos/economia , Reatores Biológicos/normas , Quimiocinas CC/isolamento & purificação , Quimiocinas CC/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Fermentação , Humanos , Concentração Inibidora 50 , Projetos Piloto , Internalização do Vírus/efeitos dos fármacos
18.
PLoS Negl Trop Dis ; 9(12): e0004259, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26625182

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is an often lethal, acute inflammatory illness that affects a large geographic area. The disease is caused by infection with CCHF virus (CCHFV), a nairovirus from the Bunyaviridae family. Basic research on CCHFV has been severely hampered by biosafety requirements and lack of available strains and molecular tools. We report the development of a CCHF transcription- and entry-competent virus-like particle (tecVLP) system that can be used to study cell entry and viral transcription/replication over a broad dynamic range (~4 orders of magnitude). The tecVLPs are morphologically similar to authentic CCHFV. Incubation of immortalized and primary human cells with tecVLPs results in a strong reporter signal that is sensitive to treatment with neutralizing monoclonal antibodies and by small molecule inhibitors of CCHFV. We used glycoproteins and minigenomes from divergent CCHFV strains to generate tecVLPs, and in doing so, we identified a monoclonal antibody that can prevent cell entry of tecVLPs containing glycoproteins from 3 pathogenic CCHFV strains. In addition, our data suggest that different glycoprotein moieties confer different cellular entry efficiencies, and that glycoproteins from the commonly used strain IbAr10200 have up to 100-fold lower ability to enter primary human cells compared to glycoproteins from pathogenic CCHFV strains.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Transcrição Gênica/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Dados de Sequência Molecular , Análise de Sequência de DNA , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura
19.
Kaohsiung J Med Sci ; 31(6): 293-302, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26043408

RESUMO

Enterovirus 71 (EV71) can cause central nervous system infections with mortality and neurologic sequelae. At present, there is no effective therapeutic modality for EV71 infection. The infection is more common in families with poor socioeconomic status. Therefore, finding a readily available, cost-effective therapeutic modality would be very helpful to these socioeconomically disadvantaged families. Yakammaoto is a cheap and readily available traditional prescription that is proven to have antiviral activity against coxsackievirus B4 (CVB4). CVB4 and EV71 are enteroviruses. In this study, we evaluated the antiviral activity of hot water extract of yakammaoto against EV71. The results of plaque reduction assay and flow cytometry demonstrated that yakammaoto dose dependently inhibited EV71 infection. In addition, reverse transcription-polymerase chain reaction (RT-PCR) and quantitative RT-PCR results showed that yakammaoto reduced viral replication. Western blotting analysis showed that yakammaoto can inhibit viral protein production. Thus, our results suggest that yakammaoto should be considered to manage EV71 infection in the future.


Assuntos
Antivirais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Enterovirus Humano A/fisiologia , Avaliação Pré-Clínica de Medicamentos , Enterovirus Humano A/efeitos dos fármacos , Genes Virais , Células Hep G2 , Humanos , Biossíntese de Proteínas , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Ligação Viral , Internalização do Vírus , Replicação Viral/efeitos dos fármacos
20.
Infect Genet Evol ; 34: 326-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26048414

RESUMO

Ebola is a highly pathogenic enveloped virus responsible for deadly outbreaks of severe hemorrhagic fever. It enters human cells by binding a multifunctional cholesterol transporter Niemann-Pick C1 (NPC1) protein. Post translational modification (PTM) information for NPC1 is crucial to understand Ebola virus (EBOV) entry and action due to changes in phosphorylation or glycosylation at the binding site. It is difficult and costly to experimentally assess this type of interaction, so in silico strategy was employed. Identification of phosphorylation sites, including conserved residues that could be possible targets for 21 predicted kinases was followed by interplay study between phosphorylation and O-ß-GlcNAc modification of NPC1. Results revealed that only 4 out of 48 predicted phosphosites exhibited O-ß-GlcNAc activity. Predicted outcomes were integrated with residue conservation and 3D structural information. Three Yin Yang sites were located in the α-helix regions and were conserved in studied vertebrate and mammalian species. Only one modification site S425 was found in ß-turn region located near the N-terminus of NPC1 and was found to differ in pig, mouse, cobra and humans. The predictions suggest that Yin Yang sites may not be important for virus attachment to NPC1, whereas phosphosite 473 may be important for binding and hence entry of Ebola virus. This information could be useful in addressing further experimental studies and therapeutic strategies targeting PTM events in EBOV entry.


Assuntos
Proteínas de Transporte/química , Ebolavirus/fisiologia , Glicoproteínas de Membrana/química , Processamento de Proteína Pós-Traducional , Internalização do Vírus , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Simulação por Computador , Sequência Conservada , Glicosilação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteína C1 de Niemann-Pick , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas do Envelope Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA